Nuprl Lemma : le-lattice-1

[l:BoundedLattice]. ∀[x:Point(l)].  x ≤ 1


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice-1: 1 lattice-le: a ≤ b lattice-point: Point(l) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-le: a ≤ b subtype_rel: A ⊆B bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a squash: T cand: c∧ B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf equal_wf squash_wf true_wf lattice-meet-1 iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution axiomEquality hypothesis extract_by_obid isectElimination thin hypothesisEquality applyEquality instantiate lambdaEquality productEquality cumulativity independent_isectElimination isect_memberEquality because_Cache setElimination rename productElimination imageElimination equalityTransitivity equalitySymmetry universeEquality independent_pairFormation dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    x  \mleq{}  1



Date html generated: 2017_10_05-AM-00_31_26
Last ObjectModification: 2017_07_28-AM-09_13_07

Theory : lattices


Home Index