Nuprl Lemma : lattice-meet-1

[l:BoundedLattice]. ∀[x:Point(l)].  (x ∧ x ∈ Point(l))


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice-1: 1 lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a guard: {T} bounded-lattice-axioms: bounded-lattice-axioms(l)
Lemmas referenced :  lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf and_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality cumulativity independent_isectElimination isect_memberEquality axiomEquality because_Cache setElimination rename productElimination

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    (x  \mwedge{}  1  =  x)



Date html generated: 2016_05_18-AM-11_22_55
Last ObjectModification: 2015_12_28-PM-02_02_41

Theory : lattices


Home Index