Nuprl Lemma : lattice-extend-is-hom-constrained

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
[f:T ⟶ Point(L)].
  λac.lattice-extend-wc(L;eq;eqL;f;ac) ∈ Hom(free-dist-lattice-with-constraints(T;eq;x.Cs[x]);L) 
  supposing ∀x:T. ∀c:fset(T).  (c ∈ Cs[x]  (/\(f"(c)) 0 ∈ Point(L)))


Proof




Definitions occuring in Statement :  lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-fset-meet: /\(s) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-0: 0 lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice prop: and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 record-select: r.x free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  order-preserving-map-is-bounded-lattice-hom free-dist-lattice-with-constraints_wf bdd-distributive-lattice-subtype-bdd-lattice lattice-extend-wc_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf lattice-extend-wc-order-preserving lattice-le_wf lattice-extend-wc-meet lattice-extend-wc-join lattice-0_wf squash_wf true_wf lattice-extend-wc-1 lattice-1_wf iff_weakening_equal all_wf fset_wf fset-member_wf deq-fset_wf lattice-fset-meet_wf decidable-equal-deq fset-image_wf deq_wf bdd-distributive-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality hypothesis because_Cache instantiate productEquality universeEquality independent_isectElimination lambdaFormation independent_pairFormation productElimination setElimination rename imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_functionElimination axiomEquality functionEquality dependent_functionElimination isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[L:BoundedDistributiveLattice].
\mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[f:T  {}\mrightarrow{}  Point(L)].
    \mlambda{}ac.lattice-extend-wc(L;eq;eqL;f;ac)  \mmember{}  Hom(free-dist-lattice-with-constraints(T;eq;x.Cs[x]);L) 
    supposing  \mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(f"(c))  =  0))



Date html generated: 2017_10_05-AM-00_39_58
Last ObjectModification: 2017_07_28-AM-09_15_44

Theory : lattices


Home Index