Nuprl Lemma : lattice-extend-wc-1

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
[f:T ⟶ Point(L)].
  (lattice-extend-wc(L;eq;eqL;f;1) 1 ∈ Point(L))


Proof




Definitions occuring in Statement :  lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) bdd-distributive-lattice: BoundedDistributiveLattice lattice-1: 1 lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-1: 1 record-select: r.x free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y btrue: tt fset-singleton: {x} cons: [a b] empty-fset: {} nil: [] it: free-dist-lattice: free-dist-lattice(T; eq) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf fset_wf squash_wf true_wf lattice-extend-1 lattice-1_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis functionEquality cumulativity hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination isect_memberEquality axiomEquality imageElimination equalityTransitivity equalitySymmetry setElimination rename natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[L:BoundedDistributiveLattice].
\mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[f:T  {}\mrightarrow{}  Point(L)].
    (lattice-extend-wc(L;eq;eqL;f;1)  =  1)



Date html generated: 2017_10_05-AM-00_37_11
Last ObjectModification: 2017_07_28-AM-09_15_26

Theory : lattices


Home Index