Nuprl Lemma : lattice-extend-wc-meet

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
[f:T ⟶ Point(L)].
  ∀[a,b:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
    lattice-extend-wc(L;eq;eqL;f;a) ∧ lattice-extend-wc(L;eq;eqL;f;b) ≤ lattice-extend-wc(L;eq;eqL;f;a ∧ b) 
  supposing ∀x:T. ∀c:fset(T).  (c ∈ Cs[x]  (/\(f"(c)) 0 ∈ Point(L)))


Proof




Definitions occuring in Statement :  lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-fset-meet: /\(s) bdd-distributive-lattice: BoundedDistributiveLattice lattice-0: 0 lattice-le: a ≤ b lattice-meet: a ∧ b lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top so_lambda: λ2x.t[x] so_apply: x[s] lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-extend': lattice-extend'(L;eq;eqL;f;ac) subtype_rel: A ⊆B lattice-le: a ≤ b bdd-distributive-lattice: BoundedDistributiveLattice prop: and: P ∧ Q implies:  Q all: x:A. B[x] fset-constrained-ac-glb: glb(P;ac1;ac2) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} uiff: uiff(P;Q) squash: T sq_stable: SqStable(P) exists: x:A. B[x] cand: c∧ B lattice-fset-meet: /\(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum compose: g true: True bdd-lattice: BoundedLattice iff: ⇐⇒ Q rev_implies:  Q f-subset: xs ⊆ ys decidable: Dec(P) or: P ∨ Q fset-union: x ⋃ y l-union: as ⋃ bs not: ¬A false: False bounded-lattice-axioms: bounded-lattice-axioms(l)
Lemmas referenced :  free-dlwc-meet free-dlwc-point lattice-le_transitivity bdd-distributive-lattice-subtype-lattice lattice-meet_wf lattice-extend'_wf f-union_wf fset_wf deq-fset_wf fset-constrained-image_wf fset-union_wf fset-contains-none_wf fset-constrained-ac-glb_wf lattice-point_wf free-dist-lattice-with-constraints_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-join_wf all_wf fset-member_wf lattice-fset-meet_wf bdd-distributive-lattice-subtype-bdd-lattice decidable-equal-deq fset-image_wf lattice-0_wf deq_wf bdd-distributive-lattice_wf fset-minimals-ac-le fset-minimals_wf f-proper-subset-dec_wf fset-ac-le-implies2 fset-ac-le_wf lattice-fset-join-is-lub lattice-fset-join_wf member-fset-image-iff sq_stable_from_decidable lattice-le_wf lattice-fset-meet_functionality_wrt_subset fset-image_functionality_wrt_subset fset-image-compose squash_wf true_wf decidable_wf bdd-lattice_wf iff_weakening_equal lattice-meet-join-images-distrib lattice-fset-join_functionality_wrt_subset2 fset-member_witness fset-singleton_wf sq_stable__fset-member member-f-union fset-image-union member-fset-union decidable__assert assert_wf member-fset-constrained-image-iff member-fset-singleton assert-fset-contains-none not_wf f-subset_wf deq-implies lattice-le-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis because_Cache hypothesisEquality applyEquality functionExtensionality setElimination rename lambdaEquality independent_isectElimination axiomEquality cumulativity instantiate productEquality universeEquality functionEquality independent_functionElimination lambdaFormation dependent_functionElimination equalityTransitivity equalitySymmetry productElimination imageElimination hyp_replacement applyLambdaEquality imageMemberEquality baseClosed dependent_pairFormation independent_pairFormation natural_numberEquality unionElimination inrFormation inlFormation promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[L:BoundedDistributiveLattice].
\mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[f:T  {}\mrightarrow{}  Point(L)].
    \mforall{}[a,b:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
        lattice-extend-wc(L;eq;eqL;f;a)  \mwedge{}  lattice-extend-wc(L;eq;eqL;f;b) 
        \mleq{}  lattice-extend-wc(L;eq;eqL;f;a  \mwedge{}  b) 
    supposing  \mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(f"(c))  =  0))



Date html generated: 2017_10_05-AM-00_39_53
Last ObjectModification: 2017_07_28-AM-09_15_41

Theory : lattices


Home Index