Nuprl Lemma : fset-minimals-ac-le

[T:Type]. ∀eq:EqDecider(T). ∀s:fset(fset(T)).  fset-ac-le(eq;s;fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); s))


Proof




Definitions occuring in Statement :  fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-ac-le: fset-ac-le(eq;ac1;ac2) f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] fset-ac-le: fset-ac-le(eq;ac1;ac2) so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q implies:  Q and: P ∧ Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) not: ¬A fset-all: fset-all(s;x.P[x]) nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top guard: {T} decidable: Dec(P) or: P ∨ Q cand: c∧ B less_than: a < b squash: T f-proper-subset: xs ⊆≠ ys le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  fset-all-iff fset_wf deq-fset_wf iff_weakening_uiff fset-all_wf bnot_wf fset-null_wf fset-filter_wf deq-f-subset_wf bool_wf all_wf iff_wf f-subset_wf assert_wf fset-minimals_wf f-proper-subset-dec_wf uall_wf isect_wf fset-member_wf assert_of_bnot assert-fset-null not_wf equal-wf-T-base assert_witness deq_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf fset-size_wf nat_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma member-fset-filter assert-deq-f-subset f-subset_weakening member-fset-minimals iff_transitivity f-proper-subset_wf assert-f-proper-subset-dec fset-size-proper-subset decidable__lt fset-extensionality mem_empty_lemma fset-member_witness false_wf f-subset_transitivity add_nat_wf le_wf add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality setElimination rename setEquality functionEquality functionExtensionality because_Cache independent_functionElimination productElimination independent_isectElimination addLevel impliesFunctionality baseClosed isect_memberEquality equalityTransitivity equalitySymmetry dependent_functionElimination universeEquality intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll applyLambdaEquality unionElimination imageElimination independent_pairEquality hyp_replacement dependent_set_memberEquality addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}s:fset(fset(T)).
        fset-ac-le(eq;s;fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys);  s))



Date html generated: 2017_04_17-AM-09_23_46
Last ObjectModification: 2017_02_27-PM-05_26_42

Theory : finite!sets


Home Index