Nuprl Lemma : fset-minimals-ac-le
∀[T:Type]. ∀eq:EqDecider(T). ∀s:fset(fset(T)).  fset-ac-le(eq;s;fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); s))
Proof
Definitions occuring in Statement : 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
not: ¬A
, 
fset-all: fset-all(s;x.P[x])
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
f-proper-subset: xs ⊆≠ ys
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
Lemmas referenced : 
fset-all-iff, 
fset_wf, 
deq-fset_wf, 
iff_weakening_uiff, 
fset-all_wf, 
bnot_wf, 
fset-null_wf, 
fset-filter_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
assert_wf, 
fset-minimals_wf, 
f-proper-subset-dec_wf, 
uall_wf, 
isect_wf, 
fset-member_wf, 
assert_of_bnot, 
assert-fset-null, 
not_wf, 
equal-wf-T-base, 
assert_witness, 
deq_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
fset-size_wf, 
nat_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
member-fset-filter, 
assert-deq-f-subset, 
f-subset_weakening, 
member-fset-minimals, 
iff_transitivity, 
f-proper-subset_wf, 
assert-f-proper-subset-dec, 
fset-size-proper-subset, 
decidable__lt, 
fset-extensionality, 
mem_empty_lemma, 
fset-member_witness, 
false_wf, 
f-subset_transitivity, 
add_nat_wf, 
le_wf, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
functionExtensionality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
addLevel, 
impliesFunctionality, 
baseClosed, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
universeEquality, 
intWeakElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
applyLambdaEquality, 
unionElimination, 
imageElimination, 
independent_pairEquality, 
hyp_replacement, 
dependent_set_memberEquality, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}s:fset(fset(T)).
        fset-ac-le(eq;s;fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys);  s))
Date html generated:
2017_04_17-AM-09_23_46
Last ObjectModification:
2017_02_27-PM-05_26_42
Theory : finite!sets
Home
Index