Nuprl Lemma : fset-size-proper-subset

[T:Type]. ∀eq:EqDecider(T). ∀x,ys:fset(T).  (ys ⊆≠  ||ys|| < ||x||)


Proof




Definitions occuring in Statement :  fset-size: ||s|| f-proper-subset: xs ⊆≠ ys fset: fset(T) deq: EqDecider(T) less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B nat: uimplies: supposing a squash: T fset: fset(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] true: True quotient: x,y:A//B[x; y] and: P ∧ Q f-proper-subset: xs ⊆≠ ys f-subset: xs ⊆ ys fset-member: a ∈ s rev_implies:  Q iff: ⇐⇒ Q fset-size: ||s|| so_lambda: λ2x.t[x] so_apply: x[s] l_subset: l_subset(T;as;bs) guard: {T} decidable: Dec(P) or: P ∨ Q not: ¬A cand: c∧ B false: False le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  f-proper-subset_wf fset_wf deq_wf member-less_than fset-size_wf nat_wf less_than_wf quotient-member-eq set-equal_wf set-equal-equiv list_wf list_subtype_fset equal-wf-base equal_wf set-equal-reflex member_wf squash_wf true_wf assert-deq-member l_member_wf length_wf remove-repeats_wf all_wf isect_wf l_subset-l_contains decidable__lt set-equal-l_contains remove-repeats-l_contains decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformle_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_less_lemma int_formula_prop_wf remove-repeats-l_contains-iff no_repeats-same-length-l_contains remove-repeats_property l_contains_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination applyEquality setElimination rename because_Cache independent_isectElimination universeEquality imageElimination equalityTransitivity equalitySymmetry independent_functionElimination imageMemberEquality baseClosed natural_numberEquality promote_hyp pointwiseFunctionality pertypeElimination productElimination productEquality instantiate addLevel allFunctionality levelHypothesis unionElimination independent_pairFormation voidElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll impliesFunctionality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x,ys:fset(T).    (ys  \msubseteq{}\mneq{}  x  {}\mRightarrow{}  ||ys||  <  ||x||)



Date html generated: 2017_04_17-AM-09_22_26
Last ObjectModification: 2017_02_27-PM-05_25_25

Theory : finite!sets


Home Index