Nuprl Lemma : fset-size-proper-subset
∀[T:Type]. ∀eq:EqDecider(T). ∀x,ys:fset(T).  (ys ⊆≠ x 
⇒ ||ys|| < ||x||)
Proof
Definitions occuring in Statement : 
fset-size: ||s||
, 
f-proper-subset: xs ⊆≠ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
squash: ↓T
, 
fset: fset(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
true: True
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
f-proper-subset: xs ⊆≠ ys
, 
f-subset: xs ⊆ ys
, 
fset-member: a ∈ s
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
fset-size: ||s||
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
l_subset: l_subset(T;as;bs)
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
cand: A c∧ B
, 
false: False
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
f-proper-subset_wf, 
fset_wf, 
deq_wf, 
member-less_than, 
fset-size_wf, 
nat_wf, 
less_than_wf, 
quotient-member-eq, 
set-equal_wf, 
set-equal-equiv, 
list_wf, 
list_subtype_fset, 
equal-wf-base, 
equal_wf, 
set-equal-reflex, 
member_wf, 
squash_wf, 
true_wf, 
assert-deq-member, 
l_member_wf, 
length_wf, 
remove-repeats_wf, 
all_wf, 
isect_wf, 
l_subset-l_contains, 
decidable__lt, 
set-equal-l_contains, 
remove-repeats-l_contains, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
intformle_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
remove-repeats-l_contains-iff, 
no_repeats-same-length-l_contains, 
remove-repeats_property, 
l_contains_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
universeEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
promote_hyp, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
productEquality, 
instantiate, 
addLevel, 
allFunctionality, 
levelHypothesis, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
impliesFunctionality, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x,ys:fset(T).    (ys  \msubseteq{}\mneq{}  x  {}\mRightarrow{}  ||ys||  <  ||x||)
Date html generated:
2017_04_17-AM-09_22_26
Last ObjectModification:
2017_02_27-PM-05_25_25
Theory : finite!sets
Home
Index