Nuprl Lemma : remove-repeats-l_contains

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L1,L2:T List].  ||remove-repeats(eq;L1)|| ≤ ||remove-repeats(eq;L2)|| supposing L1 ⊆ L2


Proof




Definitions occuring in Statement :  remove-repeats: remove-repeats(eq;L) l_contains: A ⊆ B length: ||as|| list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q l_contains: A ⊆ B so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q implies:  Q rev_implies:  Q le: A ≤ B not: ¬A false: False
Lemmas referenced :  l_contains-no_repeats-length remove-repeats_wf remove-repeats_property l_all_iff l_member_wf member-remove-repeats less_than'_wf length_wf l_contains_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination because_Cache dependent_functionElimination productElimination sqequalRule lambdaEquality setElimination rename setEquality independent_functionElimination lambdaFormation addLevel impliesFunctionality functionEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L1,L2:T  List].
    ||remove-repeats(eq;L1)||  \mleq{}  ||remove-repeats(eq;L2)||  supposing  L1  \msubseteq{}  L2



Date html generated: 2016_05_14-PM-03_26_10
Last ObjectModification: 2015_12_26-PM-06_23_01

Theory : decidable!equality


Home Index