Nuprl Lemma : l_contains-no_repeats-length
∀[T:Type]. ∀[as,bs:T List]. (||as|| ≤ ||bs||) supposing (as ⊆ bs and no_repeats(T;as))
Proof
Definitions occuring in Statement :
l_contains: A ⊆ B
,
no_repeats: no_repeats(T;l)
,
length: ||as||
,
list: T List
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
le: A ≤ B
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
l_contains: A ⊆ B
,
l_member: (x ∈ l)
,
l_all: (∀x∈L.P[x])
,
exists: ∃x:A. B[x]
,
int_seg: {i..j-}
,
subtype_rel: A ⊆r B
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
ge: i ≥ j
,
guard: {T}
,
all: ∀x:A. B[x]
,
prop: ℙ
,
decidable: Dec(P)
,
or: P ∨ Q
,
nat: ℕ
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
le: A ≤ B
,
so_lambda: λ2x.t[x]
,
cand: A c∧ B
,
less_than: a < b
,
squash: ↓T
,
so_apply: x[s]
,
pi1: fst(t)
,
inject: Inj(A;B;f)
,
no_repeats: no_repeats(T;l)
,
less_than': less_than'(a;b)
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
injection_le,
length_wf_nat,
int_seg_wf,
length_wf,
non_neg_length,
int_seg_properties,
decidable__le,
lelt_wf,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformnot_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_not_lemma,
int_formula_prop_wf,
inject_wf,
less_than'_wf,
l_contains_wf,
no_repeats_wf,
list_wf,
exists_wf,
nat_wf,
less_than_wf,
equal_wf,
select_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
all_wf,
decidable__equal_int_seg,
int_seg_subtype_nat,
false_wf,
intformeq_wf,
int_formula_prop_eq_lemma,
squash_wf,
true_wf,
iff_weakening_equal,
le_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
sqequalRule,
hypothesis,
promote_hyp,
thin,
productElimination,
extract_by_obid,
isectElimination,
cumulativity,
hypothesisEquality,
independent_isectElimination,
dependent_pairFormation,
functionExtensionality,
dependent_set_memberEquality,
applyEquality,
natural_numberEquality,
because_Cache,
independent_pairFormation,
setElimination,
rename,
dependent_functionElimination,
unionElimination,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
independent_pairEquality,
axiomEquality,
universeEquality,
productEquality,
imageElimination,
lambdaFormation,
independent_functionElimination,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[T:Type]. \mforall{}[as,bs:T List]. (||as|| \mleq{} ||bs||) supposing (as \msubseteq{} bs and no\_repeats(T;as))
Date html generated:
2017_04_17-AM-07_29_44
Last ObjectModification:
2017_02_27-PM-04_07_44
Theory : list_1
Home
Index