Nuprl Lemma : l_contains_wf
∀[T:Type]. ∀[A,B:T List].  (A ⊆ B ∈ ℙ)
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
l_contains: A ⊆ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
l_all_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A,B:T  List].    (A  \msubseteq{}  B  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-07_53_24
Last ObjectModification:
2015_12_26-PM-04_47_19
Theory : list_1
Home
Index