Nuprl Lemma : no_repeats-same-length-l_contains

[T:Type]. ∀as,bs:T List.  (no_repeats(T;as)  (||as|| ||bs|| ∈ ℤ as ⊆ bs  bs ⊆ as)


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B no_repeats: no_repeats(T;l) length: ||as|| list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: l_contains: A ⊆ B l_member: (x ∈ l) l_all: (∀x∈L.P[x]) exists: x:A. B[x] nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B cand: c∧ B uimplies: supposing a guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B pi1: fst(t) inject: Inj(A;B;f) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q no_repeats: no_repeats(T;l) less_than': less_than'(a;b) surject: Surj(A;B;f) less_than: a < b sq_type: SQType(T)
Lemmas referenced :  l_contains_wf equal_wf length_wf no_repeats_wf list_wf lelt_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma int_seg_wf exists_wf all_wf non_neg_length length_wf_nat and_wf less_than_wf injection-is-surjection squash_wf true_wf iff_weakening_equal le_wf decidable__equal_int_seg int_seg_subtype_nat false_wf nat_wf subtype_base_sq set_subtype_base int_subtype_base l_member_wf select_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis intEquality universeEquality sqequalRule dependent_functionElimination productElimination dependent_pairFormation setElimination rename dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry because_Cache independent_isectElimination natural_numberEquality unionElimination lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp applyEquality functionExtensionality applyLambdaEquality independent_functionElimination hyp_replacement imageElimination imageMemberEquality baseClosed productEquality instantiate

Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.    (no\_repeats(T;as)  {}\mRightarrow{}  (||as||  =  ||bs||)  {}\mRightarrow{}  as  \msubseteq{}  bs  {}\mRightarrow{}  bs  \msubseteq{}  as)



Date html generated: 2017_04_17-AM-07_29_53
Last ObjectModification: 2017_02_27-PM-04_07_56

Theory : list_1


Home Index