Nuprl Lemma : member-fset-constrained-image-iff

[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[P:A ⟶ 𝔹]. ∀[s:fset(T)]. ∀[a:A].
  uiff(a ∈ f"(s) s.t. P;↓∃x:T. (x ∈ s ∧ (a (f x) ∈ A) ∧ (↑(P a))))


Proof




Definitions occuring in Statement :  fset-constrained-image: f"(s) s.t. P fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  fset-constrained-image: f"(s) s.t. P uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T squash: T exists: x:A. B[x] prop: cand: c∧ B uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False top: Top not: ¬A iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  fset-member_wf equal_wf assert_wf squash_wf exists_wf ifthenelse_wf fset_wf fset-singleton_wf empty-fset_wf bool_wf eqtt_to_assert member-fset-singleton eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot mem_empty_lemma assert_elim and_wf not_assert_elim btrue_neq_bfalse iff_weakening_uiff f-union_wf member-f-union fset-member_witness uiff_wf fset-constrained-image_wf deq_wf bool_cases assert_functionality_wrt_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut independent_pairFormation isect_memberFormation introduction sqequalHypSubstitution imageElimination productElimination thin dependent_pairFormation hypothesisEquality productEquality extract_by_obid isectElimination cumulativity hypothesis applyEquality functionExtensionality sqequalRule imageMemberEquality baseClosed lambdaEquality lambdaFormation unionElimination equalityElimination because_Cache independent_isectElimination equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination isect_memberEquality voidEquality dependent_set_memberEquality applyLambdaEquality setElimination rename addLevel functionEquality universeEquality independent_pairEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
\mforall{}[a:A].
    uiff(a  \mmember{}  f"(s)  s.t.  P;\mdownarrow{}\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  (a  =  (f  x))  \mwedge{}  (\muparrow{}(P  a))))



Date html generated: 2017_04_17-AM-09_21_15
Last ObjectModification: 2017_02_27-PM-05_24_13

Theory : finite!sets


Home Index