Nuprl Lemma : fset-constrained-image_wf

[T,A:Type]. ∀[domeq:EqDecider(T)]. ∀[rngeq:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[P:A ⟶ 𝔹]. ∀[s:fset(T)].
  (f"(s) s.t. P ∈ fset(A))


Proof




Definitions occuring in Statement :  fset-constrained-image: f"(s) s.t. P fset: fset(T) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset-constrained-image: f"(s) s.t. P so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  f-union_wf ifthenelse_wf fset_wf fset-singleton_wf empty-fset_wf bool_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[domeq:EqDecider(T)].  \mforall{}[rngeq:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    (f"(s)  s.t.  P  \mmember{}  fset(A))



Date html generated: 2016_05_14-PM-03_44_21
Last ObjectModification: 2015_12_26-PM-06_38_37

Theory : finite!sets


Home Index