Nuprl Lemma : fset-constrained-image_wf
∀[T,A:Type]. ∀[domeq:EqDecider(T)]. ∀[rngeq:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[P:A ⟶ 𝔹]. ∀[s:fset(T)].
  (f"(s) s.t. P ∈ fset(A))
Proof
Definitions occuring in Statement : 
fset-constrained-image: f"(s) s.t. P
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset-constrained-image: f"(s) s.t. P
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
f-union_wf, 
ifthenelse_wf, 
fset_wf, 
fset-singleton_wf, 
empty-fset_wf, 
bool_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T,A:Type].  \mforall{}[domeq:EqDecider(T)].  \mforall{}[rngeq:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    (f"(s)  s.t.  P  \mmember{}  fset(A))
Date html generated:
2016_05_14-PM-03_44_21
Last ObjectModification:
2015_12_26-PM-06_38_37
Theory : finite!sets
Home
Index