Nuprl Lemma : free-dlwc-meet
∀[T,eq,a,b,cs:Top].  (a ∧ b ~ glb(λs.fset-contains-none(eq;s;x.cs[x]);a;b))
Proof
Definitions occuring in Statement : 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
lattice-meet: a ∧ b
, 
fset-constrained-ac-glb: glb(P;ac1;ac2)
, 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x])
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
lattice-meet: a ∧ b
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
Lemmas referenced : 
rec_select_update_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[T,eq,a,b,cs:Top].    (a  \mwedge{}  b  \msim{}  glb(\mlambda{}s.fset-contains-none(eq;s;x.cs[x]);a;b))
Date html generated:
2016_05_18-AM-11_33_06
Last ObjectModification:
2015_12_28-PM-01_58_48
Theory : lattices
Home
Index