Nuprl Lemma : fset-image-union

[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[x,y:fset(T)].
  (f"(x ⋃ y) f"(x) ⋃ f"(y) ∈ fset(A))


Proof




Definitions occuring in Statement :  fset-image: f"(s) fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: rev_implies:  Q all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) guard: {T} not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) squash: T exists: x:A. B[x] cand: c∧ B false: False
Lemmas referenced :  fset-extensionality fset-image_wf fset-union_wf fset-member_witness fset-member_wf or_wf member-fset-union uiff_wf fset_wf deq_wf member-fset-image-iff decidable__fset-member squash_wf exists_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity functionExtensionality applyEquality hypothesis productElimination independent_isectElimination independent_pairFormation because_Cache independent_functionElimination rename addLevel dependent_functionElimination sqequalRule independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality functionEquality universeEquality unionElimination inlFormation inrFormation lambdaFormation lambdaEquality productEquality promote_hyp imageElimination dependent_pairFormation imageMemberEquality baseClosed voidElimination

Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[x,y:fset(T)].
    (f"(x  \mcup{}  y)  =  f"(x)  \mcup{}  f"(y))



Date html generated: 2017_04_17-AM-09_20_54
Last ObjectModification: 2017_02_27-PM-05_24_10

Theory : finite!sets


Home Index