Nuprl Lemma : fset-image-union
∀[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[x,y:fset(T)].
  (f"(x ⋃ y) = f"(x) ⋃ f"(y) ∈ fset(A))
Proof
Definitions occuring in Statement : 
fset-image: f"(s)
, 
fset-union: x ⋃ y
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
guard: {T}
, 
not: ¬A
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
false: False
Lemmas referenced : 
fset-extensionality, 
fset-image_wf, 
fset-union_wf, 
fset-member_witness, 
fset-member_wf, 
or_wf, 
member-fset-union, 
uiff_wf, 
fset_wf, 
deq_wf, 
member-fset-image-iff, 
decidable__fset-member, 
squash_wf, 
exists_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
independent_functionElimination, 
rename, 
addLevel, 
dependent_functionElimination, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
universeEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
lambdaFormation, 
lambdaEquality, 
productEquality, 
promote_hyp, 
imageElimination, 
dependent_pairFormation, 
imageMemberEquality, 
baseClosed, 
voidElimination
Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[x,y:fset(T)].
    (f"(x  \mcup{}  y)  =  f"(x)  \mcup{}  f"(y))
Date html generated:
2017_04_17-AM-09_20_54
Last ObjectModification:
2017_02_27-PM-05_24_10
Theory : finite!sets
Home
Index