Nuprl Lemma : free-dist-lattice-with-constraints_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))].
  (free-dist-lattice-with-constraints(T;eq;x.Cs[x]) ∈ BoundedDistributiveLattice)
Proof
Definitions occuring in Statement : 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x])
, 
fset-contains-none-of: fset-contains-none-of(eq;s;cs)
, 
fset-null: fset-null(s)
, 
null: null(as)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
btrue: tt
, 
true: True
Lemmas referenced : 
constrained-antichain-lattice_wf, 
fset-contains-none_wf, 
fset_wf, 
fset-contains-none-closed-downward, 
assert_wf, 
f-subset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
    (free-dist-lattice-with-constraints(T;eq;x.Cs[x])  \mmember{}  BoundedDistributiveLattice)
Date html generated:
2016_05_18-AM-11_32_52
Last ObjectModification:
2015_12_28-PM-01_59_06
Theory : lattices
Home
Index