Nuprl Lemma : fset-contains-none-closed-downward
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))].
  ∀x,y:fset(T).  (y ⊆ x 
⇒ (↑fset-contains-none(eq;x;a.Cs[a])) 
⇒ (↑fset-contains-none(eq;y;a.Cs[a])))
Proof
Definitions occuring in Statement : 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x])
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
f-subset: xs ⊆ ys
Lemmas referenced : 
f-subset_wf, 
fset-member_wf, 
fset_wf, 
deq-fset_wf, 
all_wf, 
not_wf, 
assert-fset-contains-none, 
assert_wf, 
fset-contains-none_wf, 
deq_wf, 
assert_witness, 
f-subset_transitivity
Rules used in proof : 
cut, 
thin, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
addLevel, 
impliesFunctionality, 
productElimination, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
isect_memberFormation, 
introduction, 
dependent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
    \mforall{}x,y:fset(T).
        (y  \msubseteq{}  x  {}\mRightarrow{}  (\muparrow{}fset-contains-none(eq;x;a.Cs[a]))  {}\mRightarrow{}  (\muparrow{}fset-contains-none(eq;y;a.Cs[a])))
Date html generated:
2016_05_14-PM-03_42_27
Last ObjectModification:
2015_12_26-PM-06_39_43
Theory : finite!sets
Home
Index