Nuprl Lemma : fset-contains-none-closed-downward
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))].
  ∀x,y:fset(T).  (y ⊆ x ⇒ (↑fset-contains-none(eq;x;a.Cs[a])) ⇒ (↑fset-contains-none(eq;y;a.Cs[a])))
Proof
Definitions occuring in Statement : 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x]), 
f-subset: xs ⊆ ys, 
fset: fset(T), 
deq: EqDecider(T), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
not: ¬A, 
false: False, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
guard: {T}, 
f-subset: xs ⊆ ys
Lemmas referenced : 
f-subset_wf, 
fset-member_wf, 
fset_wf, 
deq-fset_wf, 
all_wf, 
not_wf, 
assert-fset-contains-none, 
assert_wf, 
fset-contains-none_wf, 
deq_wf, 
assert_witness, 
f-subset_transitivity
Rules used in proof : 
cut, 
thin, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
addLevel, 
impliesFunctionality, 
productElimination, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
isect_memberFormation, 
introduction, 
dependent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
    \mforall{}x,y:fset(T).
        (y  \msubseteq{}  x  {}\mRightarrow{}  (\muparrow{}fset-contains-none(eq;x;a.Cs[a]))  {}\mRightarrow{}  (\muparrow{}fset-contains-none(eq;y;a.Cs[a])))
Date html generated:
2016_05_14-PM-03_42_27
Last ObjectModification:
2015_12_26-PM-06_39_43
Theory : finite!sets
Home
Index