Nuprl Lemma : lattice-extend-wc-order-preserving

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
[f:T ⟶ Point(L)]. ∀[x,y:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
  lattice-extend-wc(L;eq;eqL;f;x) ≤ lattice-extend-wc(L;eq;eqL;f;y) supposing x ≤ y


Proof




Definitions occuring in Statement :  lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) bdd-distributive-lattice: BoundedDistributiveLattice lattice-le: a ≤ b lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a lattice-le: a ≤ b so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice prop: and: P ∧ Q lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) all: x:A. B[x] iff: ⇐⇒ Q implies:  Q rev_implies:  Q
Lemmas referenced :  lattice-le_wf free-dist-lattice-with-constraints_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-point_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf fset_wf lattice-extend-order-preserving free-dlwc-point-subtype free-dlwc-le free-dl-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution axiomEquality hypothesis lemma_by_obid isectElimination thin cumulativity hypothesisEquality lambdaEquality applyEquality because_Cache instantiate productEquality universeEquality independent_isectElimination isect_memberEquality equalityTransitivity equalitySymmetry functionEquality dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[L:BoundedDistributiveLattice].
\mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[f:T  {}\mrightarrow{}  Point(L)].
\mforall{}[x,y:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
    lattice-extend-wc(L;eq;eqL;f;x)  \mleq{}  lattice-extend-wc(L;eq;eqL;f;y)  supposing  x  \mleq{}  y



Date html generated: 2016_05_18-AM-11_37_32
Last ObjectModification: 2015_12_28-PM-01_58_34

Theory : lattices


Home Index