Nuprl Lemma : free-dlwc-le

[T:Type]
  ∀eq:EqDecider(T). ∀cs:T ⟶ fset(fset(T)). ∀x,y:Point(free-dist-lattice-with-constraints(T;eq;x.cs[x])).
    (x ≤ ⇐⇒ fset-ac-le(eq;x;y))


Proof




Definitions occuring in Statement :  free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-le: a ≤ b lattice-point: Point(l) fset-ac-le: fset-ac-le(eq;ac1;ac2) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s] lattice-le: a ≤ b subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice prop: and: P ∧ Q uimplies: supposing a implies:  Q greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) iff: ⇐⇒ Q squash: T true: True guard: {T} rev_implies:  Q fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-all: fset-all(s;x.P[x]) fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) fset-contains-none-of: fset-contains-none-of(eq;s;cs) fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum order: Order(T;x,y.R[x; y]) refl: Refl(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  free-dlwc-point lattice-point_wf free-dist-lattice-with-constraints_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf deq_wf fset-ac-order-constrained fset-contains-none_wf fset-constrained-ac-glb-is-glb fset-contains-none-closed-downward assert_wf f-subset_wf fset-ac-le_wf squash_wf true_wf fset-antichain_wf fset-all_wf subtype_rel_self iff_weakening_equal assert_witness fset-null_wf fset-filter_wf bnot_wf deq-f-subset_wf bool_wf all_wf iff_wf fset-constrained-ac-glb_wf free-dlwc-meet
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality sqequalRule hypothesis because_Cache hypothesisEquality lambdaEquality applyEquality instantiate productEquality cumulativity independent_isectElimination functionEquality universeEquality dependent_functionElimination independent_functionElimination functionExtensionality productElimination independent_pairFormation imageElimination equalityTransitivity equalitySymmetry setElimination rename setEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}cs:T  {}\mrightarrow{}  fset(fset(T)).
    \mforall{}x,y:Point(free-dist-lattice-with-constraints(T;eq;x.cs[x])).
        (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  fset-ac-le(eq;x;y))



Date html generated: 2018_05_22-PM-09_54_51
Last ObjectModification: 2018_05_20-PM-10_12_18

Theory : lattices


Home Index