Nuprl Lemma : fset-ac-order-constrained
∀[T:Type]
  ∀eq:EqDecider(T). ∀P:fset(T) ⟶ 𝔹.
    Order({ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} ac1,ac2.fset-ac-le(eq;ac1;ac2))
Proof
Definitions occuring in Statement : 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
fset-antichain: fset-antichain(eq;ac)
, 
fset-all: fset-all(s;x.P[x])
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
order: Order(T;x,y.R[x; y])
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
order: Order(T;x,y.R[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
trans: Trans(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
fset-all: fset-all(s;x.P[x])
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
top: Top
, 
false: False
, 
f-proper-subset: xs ⊆≠ ys
Lemmas referenced : 
fset-ac-le_weakening, 
set_wf, 
fset_wf, 
assert_wf, 
fset-antichain_wf, 
fset-all_wf, 
fset-ac-le_transitivity, 
fset-ac-le_wf, 
bool_wf, 
deq_wf, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
deq-f-subset_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
fset-extensionality, 
deq-fset_wf, 
fset-ac-le-implies, 
fset-member_witness, 
fset-member_wf, 
decidable__fset-member, 
empty-fset_wf, 
mem_empty_lemma, 
member-fset-filter, 
assert-deq-f-subset, 
f-subset_transitivity, 
and_wf, 
equal_wf, 
assert-fset-antichain, 
decidable__equal_fset, 
decidable-equal-deq, 
f-subset_antisymmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
functionEquality, 
dependent_functionElimination, 
independent_pairEquality, 
setEquality, 
independent_functionElimination, 
axiomEquality, 
universeEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
voidElimination, 
voidEquality, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}P:fset(T)  {}\mrightarrow{}  \mBbbB{}.
        Order(\{ac:fset(fset(T))| 
                      (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.P[a])\}  ;ac1,ac2.fset-ac-le(eq;ac1;ac2))
Date html generated:
2016_10_21-AM-10_48_13
Last ObjectModification:
2016_07_12-AM-05_53_25
Theory : finite!sets
Home
Index