Nuprl Lemma : free-dlwc-point-subtype
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))].
  (Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])) ⊆r Point(free-dist-lattice(T; eq)))
Proof
Definitions occuring in Statement : 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
Lemmas referenced : 
subtype_rel_sets, 
fset_wf, 
and_wf, 
assert_wf, 
fset-antichain_wf, 
fset-all_wf, 
fset-contains-none_wf, 
deq_wf, 
free-dlwc-point, 
free-dl-point
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
productElimination, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
    (Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))  \msubseteq{}r  Point(free-dist-lattice(T;  eq)))
Date html generated:
2016_05_18-AM-11_33_03
Last ObjectModification:
2015_12_28-PM-01_59_00
Theory : lattices
Home
Index