Nuprl Lemma : lattice-extend-wc-join

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
[f:T ⟶ Point(L)]. ∀[a,b:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
  lattice-extend-wc(L;eq;eqL;f;a ∨ b) ≤ lattice-extend-wc(L;eq;eqL;f;a) ∨ lattice-extend-wc(L;eq;eqL;f;b)


Proof




Definitions occuring in Statement :  lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) bdd-distributive-lattice: BoundedDistributiveLattice lattice-le: a ≤ b lattice-join: a ∨ b lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-le: a ≤ b bdd-distributive-lattice: BoundedDistributiveLattice prop: and: P ∧ Q uimplies: supposing a top: Top fset-constrained-ac-lub: lub(P;ac1;ac2)
Lemmas referenced :  lattice-extend-join free-dlwc-point-subtype lattice-point_wf free-dist-lattice-with-constraints_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf fset_wf free-dlwc-join free-dl-join
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule lambdaEquality hypothesis axiomEquality cumulativity because_Cache instantiate productEquality universeEquality independent_isectElimination isect_memberEquality functionEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[L:BoundedDistributiveLattice].
\mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[f:T  {}\mrightarrow{}  Point(L)].
\mforall{}[a,b:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
    lattice-extend-wc(L;eq;eqL;f;a  \mvee{}  b) 
    \mleq{}  lattice-extend-wc(L;eq;eqL;f;a)  \mvee{}  lattice-extend-wc(L;eq;eqL;f;b)



Date html generated: 2016_05_18-AM-11_37_35
Last ObjectModification: 2015_12_28-PM-01_58_19

Theory : lattices


Home Index