Nuprl Lemma : face-lattice0_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T].  ((x=0) ∈ Point(face-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
face-lattice0: (x=0)
, 
face-lattice: face-lattice(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
face-lattice: face-lattice(T;eq)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
free-dlwc-inc_wf, 
union-deq_wf, 
face-lattice-constraints_wf, 
face-lattice0-is-inc, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
inlEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].    ((x=0)  \mmember{}  Point(face-lattice(T;eq)))
Date html generated:
2016_05_18-AM-11_38_53
Last ObjectModification:
2015_12_28-PM-01_57_36
Theory : lattices
Home
Index