Nuprl Lemma : face-lattice-property

T:Type. ∀eq:EqDecider(T). ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f0,f1:T ⟶ Point(L).
  ∃g:Hom(face-lattice(T;eq);L) [(∀x:T. (((g (x=0)) (f0 x) ∈ Point(L)) ∧ ((g (x=1)) (f1 x) ∈ Point(L))))] 
  supposing ∀x:T. (f0 x ∧ f1 0 ∈ Point(L))


Proof




Definitions occuring in Statement :  face-lattice1: (x=1) face-lattice0: (x=0) face-lattice: face-lattice(T;eq) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-0: 0 lattice-meet: a ∧ b lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: face-lattice: face-lattice(T;eq) exists: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice face-lattice-constraints: face-lattice-constraints(x) uiff: uiff(P;Q) fset-pair: {a,b} fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] empty-fset: {} true: True lattice-fset-meet: /\(s) squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q bdd-lattice: BoundedLattice compose: g
Lemmas referenced :  free-dist-lattice-with-constraints-property union-deq_wf face-lattice-constraints_wf equal_wf fset-member_wf fset_wf deq-fset_wf all_wf lattice-point_wf face-lattice0_wf face-lattice1_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-0_wf deq_wf bdd-distributive-lattice_wf member-fset-singleton fset-pair_wf list_accum_cons_lemma list_accum_nil_lemma lattice-fset-meet_wf bdd-distributive-lattice-subtype-bdd-lattice decidable-equal-deq fset-image_wf fset-union_wf empty-fset_wf fset-singleton_wf reduce_nil_lemma squash_wf true_wf lattice-fset-meet-union lattice-fset-meet-singleton subtype_rel_self iff_weakening_equal lattice-1-meet face-lattice0-is-inc face-lattice1-is-inc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis rename extract_by_obid isectElimination unionEquality equalityTransitivity equalitySymmetry because_Cache unionElimination applyEquality independent_functionElimination independent_isectElimination productElimination dependent_set_memberEquality independent_pairFormation productEquality setElimination instantiate cumulativity functionEquality universeEquality inlEquality inrEquality isect_memberEquality voidElimination voidEquality hyp_replacement applyLambdaEquality functionExtensionality natural_numberEquality imageElimination imageMemberEquality baseClosed equalityUniverse levelHypothesis

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:BoundedDistributiveLattice.  \mforall{}eqL:EqDecider(Point(L)).
\mforall{}f0,f1:T  {}\mrightarrow{}  Point(L).
    \mexists{}g:Hom(face-lattice(T;eq);L)  [(\mforall{}x:T.  (((g  (x=0))  =  (f0  x))  \mwedge{}  ((g  (x=1))  =  (f1  x))))] 
    supposing  \mforall{}x:T.  (f0  x  \mwedge{}  f1  x  =  0)



Date html generated: 2019_10_31-AM-07_22_06
Last ObjectModification: 2018_08_21-PM-02_01_49

Theory : lattices


Home Index