Nuprl Lemma : face-lattice1-is-inc

T:Type. ∀eq:EqDecider(T). ∀x:T.  ((x=1) free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);inr ))


Proof




Definitions occuring in Statement :  face-lattice1: (x=1) face-lattice-constraints: face-lattice-constraints(x) free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) union-deq: union-deq(A;B;a;b) deq: EqDecider(T) all: x:A. B[x] inr: inr  universe: Type sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] face-lattice-constraints: face-lattice-constraints(x) free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) face-lattice1: (x=1) fset-singleton: {x} fset-filter: {x ∈ P[x]} fset-null: fset-null(s) member: t ∈ T top: Top uall: [x:A]. B[x] uimplies: supposing a deq-f-subset: deq-f-subset(eq) isl: isl(x) decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability iff_weakening_uiff fset-all-iff decidable__assert null: null(as) filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind fset-pair: {a,b} cons: [a b] ifthenelse: if then else fi  bnot: ¬bb decidable__fset-member assert-deq-fset-member deq-fset-member: a ∈b s deq-member: x ∈b L bor: p ∨bq union-deq: union-deq(A;B;a;b) sumdeq: sumdeq(a;b) bfalse: ff nil: [] it: btrue: tt sq_type: SQType(T) implies:  Q guard: {T}
Lemmas referenced :  filter_cons_lemma istype-void filter_nil_lemma subtype_base_sq bool_wf bool_subtype_base bfalse_wf null_nil_lemma deq_wf istype-universe decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability iff_weakening_uiff fset-all-iff decidable__assert decidable__fset-member assert-deq-fset-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis instantiate isectElimination cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination universeIsType hypothesisEquality universeEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x:T.
    ((x=1)  \msim{}  free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);inr  x  ))



Date html generated: 2019_10_31-AM-07_21_52
Last ObjectModification: 2018_11_08-PM-06_00_38

Theory : lattices


Home Index