Step
*
of Lemma
face-lattice-property
∀T:Type. ∀eq:EqDecider(T). ∀L:BoundedDistributiveLattice. ∀eqL:EqDecider(Point(L)). ∀f0,f1:T ⟶ Point(L).
∃g:Hom(face-lattice(T;eq);L) [(∀x:T. (((g (x=0)) = (f0 x) ∈ Point(L)) ∧ ((g (x=1)) = (f1 x) ∈ Point(L))))]
supposing ∀x:T. (f0 x ∧ f1 x = 0 ∈ Point(L))
BY
{ (Auto
THEN (InstLemma_o (ioid Obid: free-dist-lattice-with-constraints-property) [⌜T + T⌝;⌜union-deq(T;T;eq;eq)⌝;
⌜λ2x.face-lattice-constraints(x)⌝;⌜L⌝;⌜eqL⌝;⌜λx.case x of inl(a) => f0 a | inr(b) => f1 b⌝]⋅
THENA Auto
)
THEN Try ((Fold `face-lattice` (-1) THEN ParallelLast THEN Auto))) }
1
1. T : Type@i'
2. eq : EqDecider(T)@i
3. L : BoundedDistributiveLattice@i'
4. eqL : EqDecider(Point(L))@i
5. f0 : T ⟶ Point(L)@i
6. f1 : T ⟶ Point(L)@i
7. ∀x:T. (f0 x ∧ f1 x = 0 ∈ Point(L))
8. x : T + T@i
9. c : fset(T + T)@i
10. c ∈ face-lattice-constraints(x)
⊢ /\(λx.case x of inl(a) => f0 a | inr(b) => f1 b"(c)) = 0 ∈ Point(L)
2
1. T : Type@i'
2. eq : EqDecider(T)@i
3. L : BoundedDistributiveLattice@i'
4. eqL : EqDecider(Point(L))@i
5. f0 : T ⟶ Point(L)@i
6. f1 : T ⟶ Point(L)@i
7. ∀x:T. (f0 x ∧ f1 x = 0 ∈ Point(L))
8. g : Hom(face-lattice(T;eq);L)
9. (λx.case x of inl(a) => f0 a | inr(b) => f1 b)
= (g o (λx.free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);x)))
∈ ((T + T) ⟶ Point(L))
10. x : T@i
⊢ (g (x=0)) = (f0 x) ∈ Point(L)
3
1. T : Type@i'
2. eq : EqDecider(T)@i
3. L : BoundedDistributiveLattice@i'
4. eqL : EqDecider(Point(L))@i
5. f0 : T ⟶ Point(L)@i
6. f1 : T ⟶ Point(L)@i
7. ∀x:T. (f0 x ∧ f1 x = 0 ∈ Point(L))
8. g : Hom(face-lattice(T;eq);L)
9. (λx.case x of inl(a) => f0 a | inr(b) => f1 b)
= (g o (λx.free-dlwc-inc(union-deq(T;T;eq;eq);a.face-lattice-constraints(a);x)))
∈ ((T + T) ⟶ Point(L))
10. x : T@i
11. (g (x=0)) = (f0 x) ∈ Point(L)
⊢ (g (x=1)) = (f1 x) ∈ Point(L)
Latex:
Latex:
\mforall{}T:Type. \mforall{}eq:EqDecider(T). \mforall{}L:BoundedDistributiveLattice. \mforall{}eqL:EqDecider(Point(L)).
\mforall{}f0,f1:T {}\mrightarrow{} Point(L).
\mexists{}g:Hom(face-lattice(T;eq);L) [(\mforall{}x:T. (((g (x=0)) = (f0 x)) \mwedge{} ((g (x=1)) = (f1 x))))]
supposing \mforall{}x:T. (f0 x \mwedge{} f1 x = 0)
By
Latex:
(Auto
THEN (InstLemma\_o (ioid Obid: free-dist-lattice-with-constraints-property) [\mkleeneopen{}T + T\mkleeneclose{};
\mkleeneopen{}union-deq(T;T;eq;eq)\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x.face-lattice-constraints(x)\mkleeneclose{};\mkleeneopen{}L\mkleeneclose{};\mkleeneopen{}eqL\mkleeneclose{};\mkleeneopen{}\mlambda{}x.case x
of inl(a) =>
f0 a
| inr(b) =>
f1 b\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN Try ((Fold `face-lattice` (-1) THEN ParallelLast THEN Auto)))
Home
Index