Nuprl Lemma : lattice-1-meet

[l:BoundedLattice]. ∀[x:Point(l)].  (1 ∧ x ∈ Point(l))


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice-1: 1 lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B and: P ∧ Q squash: T prop: bdd-lattice: BoundedLattice true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  lattice_properties bdd-lattice-subtype-lattice equal_wf squash_wf true_wf lattice-1_wf iff_weakening_equal lattice-meet-1 lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule productElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache setElimination rename natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination instantiate productEquality cumulativity isect_memberEquality axiomEquality

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    (1  \mwedge{}  x  =  x)



Date html generated: 2017_10_05-AM-00_31_23
Last ObjectModification: 2017_07_28-AM-09_13_05

Theory : lattices


Home Index