Nuprl Lemma : fl0_wf
∀[I:fset(ℕ)]. ∀[x:names(I)].  ((x=0) ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
names: names(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
face_lattice: face_lattice(I)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fl0: (x=0)
Lemmas referenced : 
face-lattice0_wf, 
names_wf, 
names-deq_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:names(I)].    ((x=0)  \mmember{}  Point(face\_lattice(I)))
Date html generated:
2016_05_18-PM-00_09_30
Last ObjectModification:
2015_12_28-PM-03_02_13
Theory : cubical!type!theory
Home
Index