Nuprl Lemma : dM-to-FL_wf

[I:fset(ℕ)]. ∀[z:Point(dM(I))].  (dM-to-FL(I;z) ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dM-to-FL: dM-to-FL(I;z) subtype_rel: A ⊆B uimplies: supposing a lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] DeMorgan-algebra: DeMorganAlgebra guard: {T}
Lemmas referenced :  lattice-extend_wf names_wf union-deq_wf names-deq_wf face_lattice_wf face_lattice-deq_wf fl1_wf fl0_wf subtype_rel-equal lattice-point_wf dM_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin unionEquality because_Cache hypothesis lambdaEquality unionElimination hypothesisEquality applyEquality independent_isectElimination instantiate productEquality cumulativity universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[z:Point(dM(I))].    (dM-to-FL(I;z)  \mmember{}  Point(face\_lattice(I)))



Date html generated: 2016_05_18-PM-00_11_49
Last ObjectModification: 2015_12_28-PM-03_02_06

Theory : cubical!type!theory


Home Index