Nuprl Lemma : dM-to-FL_wf
∀[I:fset(ℕ)]. ∀[z:Point(dM(I))].  (dM-to-FL(I;z) ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
dM-to-FL: dM-to-FL(I;z)
, 
face_lattice: face_lattice(I)
, 
dM: dM(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dM-to-FL: dM-to-FL(I;z)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
DeMorgan-algebra: DeMorganAlgebra
, 
guard: {T}
Lemmas referenced : 
lattice-extend_wf, 
names_wf, 
union-deq_wf, 
names-deq_wf, 
face_lattice_wf, 
face_lattice-deq_wf, 
fl1_wf, 
fl0_wf, 
subtype_rel-equal, 
lattice-point_wf, 
dM_wf, 
free-dist-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
because_Cache, 
hypothesis, 
lambdaEquality, 
unionElimination, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
instantiate, 
productEquality, 
cumulativity, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[z:Point(dM(I))].    (dM-to-FL(I;z)  \mmember{}  Point(face\_lattice(I)))
Date html generated:
2016_05_18-PM-00_11_49
Last ObjectModification:
2015_12_28-PM-03_02_06
Theory : cubical!type!theory
Home
Index