Nuprl Lemma : cat-id_wf
∀[C:SmallCategory]. (cat-id(C) ∈ x:cat-ob(C) ⟶ (cat-arrow(C) x x))
Proof
Definitions occuring in Statement : 
cat-id: cat-id(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
spreadn: spread4, 
pi2: snd(t)
, 
pi1: fst(t)
, 
small-category: SmallCategory
, 
cat-id: cat-id(C)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf
Rules used in proof : 
lemma_by_obid, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C:SmallCategory].  (cat-id(C)  \mmember{}  x:cat-ob(C)  {}\mrightarrow{}  (cat-arrow(C)  x  x))
Date html generated:
2020_05_20-AM-07_49_33
Last ObjectModification:
2015_12_28-PM-02_24_05
Theory : small!categories
Home
Index