Nuprl Lemma : nh-id_wf
∀[I:fset(ℕ)]. (1 ∈ I ⟶ I)
Proof
Definitions occuring in Statement : 
nh-id: 1
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
names-hom: I ⟶ J
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nh-id: 1
Lemmas referenced : 
dM_inc_wf, 
names_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:fset(\mBbbN{})].  (1  \mmember{}  I  {}\mrightarrow{}  I)
Date html generated:
2016_05_18-AM-11_59_27
Last ObjectModification:
2015_12_28-PM-03_07_01
Theory : cubical!type!theory
Home
Index