Nuprl Lemma : nh-id_wf

[I:fset(ℕ)]. (1 ∈ I ⟶ I)


Proof




Definitions occuring in Statement :  nh-id: 1 names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  names-hom: I ⟶ J uall: [x:A]. B[x] member: t ∈ T nh-id: 1
Lemmas referenced :  dM_inc_wf names_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:fset(\mBbbN{})].  (1  \mmember{}  I  {}\mrightarrow{}  I)



Date html generated: 2016_05_18-AM-11_59_27
Last ObjectModification: 2015_12_28-PM-03_07_01

Theory : cubical!type!theory


Home Index