Nuprl Lemma : cc-snd_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  (q ∈ {Gamma.A ⊢ _:(A)p})


Proof




Definitions occuring in Statement :  cc-snd: q cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x cc-fst: p psc-fst: p cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cc-snd: q psc-snd: q
Lemmas referenced :  psc-snd_wf cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (q  \mmember{}  \{Gamma.A  \mvdash{}  \_:(A)p\})



Date html generated: 2020_05_20-PM-01_55_01
Last ObjectModification: 2020_04_03-PM-08_29_34

Theory : cubical!type!theory


Home Index