Nuprl Lemma : psc-snd_wf

[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}].  (q ∈ {Gamma.A ⊢ _:(A)p})


Proof




Definitions occuring in Statement :  psc-snd: q psc-fst: p psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-term: {X ⊢ _:A} subtype_rel: A ⊆B presheaf-type: {X ⊢ _} ps_context: __⊢ cat-functor: Functor(C1;C2) psc-snd: q psc-fst: p pscm-ap-type: (AF)s presheaf-type-at: A(a) psc-adjoin: X.A I_set: A(I) all: x:A. B[x] pi1: fst(t) pscm-ap: (s)x pi2: snd(t) psc-restriction: f(s) uimplies: supposing a cat-ob: cat-ob(C) type-cat: TypeCat presheaf-type-ap-morph: (u f) functor-ob: ob(F) and: P ∧ Q implies:  Q respects-equality: respects-equality(S;T)
Lemmas referenced :  presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf ob_pair_lemma I_set_pair_redex_lemma presheaf_type_at_pair_lemma subtype_rel-equal cat-ob_wf op-cat_wf cat_ob_op_lemma subtype_rel_self pscm-ap-type-at psc_restriction_pair_lemma presheaf_type_ap_morph_pair_lemma I_set_wf psc-adjoin_wf cat-arrow_wf subtype-respects-equality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate applyEquality setElimination rename productElimination dependent_functionElimination Error :memTop,  lambdaEquality_alt productIsType independent_isectElimination universeEquality lambdaFormation_alt functionIsType because_Cache equalityIstype dependent_pairEquality_alt independent_pairEquality independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    (q  \mmember{}  \{Gamma.A  \mvdash{}  \_:(A)p\})



Date html generated: 2020_05_20-PM-01_27_27
Last ObjectModification: 2020_04_02-AM-11_21_50

Theory : presheaf!models!of!type!theory


Home Index