Nuprl Lemma : psc-adjoin_wf

[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}].  (Gamma.A ∈ ps_context{[i j]:l}(C))


Proof




Definitions occuring in Statement :  psc-adjoin: X.A presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  psc-adjoin-wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-type-cumulativity2 presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    (Gamma.A  \mmember{}  ps\_context\{[i  |  j]:l\}(C))



Date html generated: 2020_05_20-PM-01_27_14
Last ObjectModification: 2020_04_02-AM-11_45_02

Theory : presheaf!models!of!type!theory


Home Index