Nuprl Lemma : presheaf-type_wf
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)].  (X ⊢  ∈ 𝕌{[j' | i']})
Proof
Definitions occuring in Statement : 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf-type: {X ⊢ _}
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
Lemmas referenced : 
cat-ob_wf, 
I_set_wf, 
cat-arrow_wf, 
psc-restriction_wf, 
all_wf, 
equal_wf, 
cat-id_wf, 
subtype_rel-equal, 
psc-restriction-id, 
ps_context_cumulativity2, 
iff_weakening_equal, 
small-category-cumulativity-2, 
cat-comp_wf, 
psc-restriction-comp, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
productEquality, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
because_Cache, 
closedConclusion, 
instantiate, 
productElimination, 
independent_isectElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
inhabitedIsType, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].    (X  \mvdash{}    \mmember{}  \mBbbU{}\{[j'  |  i']\})
Date html generated:
2020_05_20-PM-01_25_17
Last ObjectModification:
2020_03_31-PM-02_37_08
Theory : presheaf!models!of!type!theory
Home
Index