Nuprl Lemma : presheaf-type_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)].  (X ⊢  ∈ 𝕌{[j' i']})


Proof




Definitions occuring in Statement :  presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T universe: Type small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-type: {X ⊢ _} subtype_rel: A ⊆B and: P ∧ Q so_lambda: λ2x.t[x] uimplies: supposing a squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_apply: x[s] prop: all: x:A. B[x]
Lemmas referenced :  cat-ob_wf I_set_wf cat-arrow_wf psc-restriction_wf all_wf equal_wf cat-id_wf subtype_rel-equal psc-restriction-id ps_context_cumulativity2 iff_weakening_equal small-category-cumulativity-2 cat-comp_wf psc-restriction-comp ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality productEquality functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt cumulativity universeIsType universeEquality because_Cache closedConclusion instantiate productElimination independent_isectElimination imageElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_functionElimination inhabitedIsType dependent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].    (X  \mvdash{}    \mmember{}  \mBbbU{}\{[j'  |  i']\})



Date html generated: 2020_05_20-PM-01_25_17
Last ObjectModification: 2020_03_31-PM-02_37_08

Theory : presheaf!models!of!type!theory


Home Index