Nuprl Lemma : psc-restriction-id

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[I:cat-ob(C)]. ∀[s:X(I)].  (cat-id(C) I(s) s ∈ X(I))


Proof




Definitions occuring in Statement :  psc-restriction: f(s) I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] apply: a equal: t ∈ T cat-id: cat-id(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ps_context: __⊢ cat-functor: Functor(C1;C2) and: P ∧ Q psc-restriction: f(s) all: x:A. B[x] pi2: snd(t) small-category: SmallCategory spreadn: spread4 type-cat: TypeCat op-cat: op-cat(C) cat-id: cat-id(C) pi1: fst(t) subtype_rel: A ⊆B true: True squash: T prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  I_set_pair_redex_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cat_ob_pair_lemma I_set_wf cat-ob_wf ps_context_wf small-category-cumulativity-2 small-category_wf equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesisEquality sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination Error :memTop,  hypothesis universeIsType isectElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate applyEquality natural_numberEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[I:cat-ob(C)].  \mforall{}[s:X(I)].    (cat-id(C)  I(s)  =  s)



Date html generated: 2020_05_20-PM-01_24_24
Last ObjectModification: 2020_04_01-AM-11_00_34

Theory : presheaf!models!of!type!theory


Home Index