Nuprl Lemma : presheaf-type-cumulativity2

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)].  ({X ⊢ _} ⊆presheaf-type{[j i]:l}(C; X))


Proof




Definitions occuring in Statement :  presheaf-type: {X ⊢ _} ps_context: __⊢ subtype_rel: A ⊆B uall: [x:A]. B[x] small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B presheaf-type: {X ⊢ _} so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] and: P ∧ Q squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  subtype_rel_dep_function I_set_wf cat-ob_wf cat-arrow_wf psc-restriction_wf cat-id_wf subtype_rel-equal equal_wf squash_wf true_wf istype-universe psc-restriction-id subtype_rel_self iff_weakening_equal cat-comp_wf psc-restriction-comp presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt productElimination dependent_pairEquality_alt functionExtensionality applyEquality hypothesisEquality hypothesis instantiate extract_by_obid isectElimination cumulativity sqequalRule universeEquality universeIsType because_Cache independent_isectElimination lambdaFormation_alt functionEquality productIsType functionIsType equalityIstype imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].    (\{X  \mvdash{}  \_\}  \msubseteq{}r  presheaf-type\{[j  |  i]:l\}(C;  X))



Date html generated: 2020_05_20-PM-01_25_49
Last ObjectModification: 2020_04_02-PM-00_41_34

Theory : presheaf!models!of!type!theory


Home Index