Nuprl Lemma : pscm-ap-type-at
∀[B,s,x,K:Top].  ((B)s(x) ~ B((s)x))
Proof
Definitions occuring in Statement : 
pscm-ap-type: (AF)s
, 
presheaf-type-at: A(a)
, 
pscm-ap: (s)x
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
presheaf-type-at: A(a)
, 
pi1: fst(t)
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
member: t ∈ T
, 
so_apply: x[s1;s2;s3;s4]
, 
top: Top
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
pscm-ap-type: (AF)s
, 
pscm-ap: (s)x
Lemmas referenced : 
lifting-strict-spread, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
strict4-spread, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueApply, 
hypothesis, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
applyExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
inlFormation, 
instantiate, 
because_Cache, 
isect_memberFormation, 
sqequalAxiom
Latex:
\mforall{}[B,s,x,K:Top].    ((B)s(x)  \msim{}  B((s)x))
Date html generated:
2018_05_22-PM-10_03_26
Last ObjectModification:
2018_05_20-PM-09_47_42
Theory : presheaf!models!of!type!theory
Home
Index