Nuprl Lemma : strict4-spread
strict4(λx,y,z,w. let a,b = x in y[a;b])
Proof
Definitions occuring in Statement : 
strict4: strict4(F)
, 
so_apply: x[s1;s2]
, 
lambda: λx.A[x]
, 
spread: spread def
Definitions unfolded in proof : 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
Lemmas referenced : 
top_wf, 
equal_wf, 
has-value_wf_base, 
base_wf, 
is-exception_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
callbyvalueSpread, 
sqequalHypSubstitution, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
thin, 
productEquality, 
introduction, 
extract_by_obid, 
productElimination, 
sqleReflexivity, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
spreadExceptionCases, 
inrFormation, 
because_Cache, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation
Latex:
strict4(\mlambda{}x,y,z,w.  let  a,b  =  x  in  y[a;b])
Date html generated:
2017_04_14-AM-07_21_48
Last ObjectModification:
2017_02_27-PM-02_55_07
Theory : computation
Home
Index