Nuprl Lemma : dm-neg_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(free-DeMorgan-lattice(T;eq))]. (¬(x) ∈ Point(free-DeMorgan-lattice(T;eq)))
Proof
Definitions occuring in Statement :
dm-neg: ¬(x)
,
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
,
lattice-point: Point(l)
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
dm-neg: ¬(x)
,
lattice-point: Point(l)
,
record-select: r.x
,
opposite-lattice: opposite-lattice(L)
,
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice,
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
,
record-update: r[x := v]
,
ifthenelse: if b then t else f fi
,
eq_atom: x =a y
,
bfalse: ff
,
btrue: tt
,
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
,
top: Top
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
and: P ∧ Q
Lemmas referenced :
lattice-extend_wf,
union-deq_wf,
opposite-lattice_wf,
free-DeMorgan-lattice_wf,
free-dl-point,
deq-fset_wf,
fset_wf,
strong-subtype-deq-subtype,
assert_wf,
fset-antichain_wf,
strong-subtype-set2,
fset-antichain-singleton,
strong-subtype-union,
strong-subtype-void,
strong-subtype-self,
fset-singleton_wf,
lattice-point_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
uall_wf,
equal_wf,
lattice-meet_wf,
lattice-join_wf,
deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
hypothesis,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
unionEquality,
hypothesisEquality,
isect_memberEquality,
voidElimination,
voidEquality,
applyEquality,
setEquality,
independent_isectElimination,
lambdaEquality,
because_Cache,
unionElimination,
inrEquality,
dependent_set_memberEquality,
inlEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
cumulativity,
instantiate,
productEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[eq:EqDecider(T)]. \mforall{}[x:Point(free-DeMorgan-lattice(T;eq))].
(\mneg{}(x) \mmember{} Point(free-DeMorgan-lattice(T;eq)))
Date html generated:
2020_05_20-AM-08_54_24
Last ObjectModification:
2015_12_28-PM-01_57_21
Theory : lattices
Home
Index