Nuprl Lemma : dm-neg_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(free-DeMorgan-lattice(T;eq))].  (x) ∈ Point(free-DeMorgan-lattice(T;eq)))


Proof




Definitions occuring in Statement :  dm-neg: ¬(x) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dm-neg: ¬(x) lattice-point: Point(l) record-select: r.x opposite-lattice: opposite-lattice(L) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) top: Top subtype_rel: A ⊆B prop: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q
Lemmas referenced :  lattice-extend_wf union-deq_wf opposite-lattice_wf free-DeMorgan-lattice_wf free-dl-point deq-fset_wf fset_wf strong-subtype-deq-subtype assert_wf fset-antichain_wf strong-subtype-set2 fset-antichain-singleton strong-subtype-union strong-subtype-void strong-subtype-self fset-singleton_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality isect_memberEquality voidElimination voidEquality applyEquality setEquality independent_isectElimination lambdaEquality because_Cache unionElimination inrEquality dependent_set_memberEquality inlEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity instantiate productEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:Point(free-DeMorgan-lattice(T;eq))].
    (\mneg{}(x)  \mmember{}  Point(free-DeMorgan-lattice(T;eq)))



Date html generated: 2020_05_20-AM-08_54_24
Last ObjectModification: 2015_12_28-PM-01_57_21

Theory : lattices


Home Index