Nuprl Lemma : dm-neg_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(free-DeMorgan-lattice(T;eq))].  (¬(x) ∈ Point(free-DeMorgan-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
dm-neg: ¬(x)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dm-neg: ¬(x)
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
opposite-lattice: opposite-lattice(L)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
and: P ∧ Q
Lemmas referenced : 
lattice-extend_wf, 
union-deq_wf, 
opposite-lattice_wf, 
free-DeMorgan-lattice_wf, 
free-dl-point, 
deq-fset_wf, 
fset_wf, 
strong-subtype-deq-subtype, 
assert_wf, 
fset-antichain_wf, 
strong-subtype-set2, 
fset-antichain-singleton, 
strong-subtype-union, 
strong-subtype-void, 
strong-subtype-self, 
fset-singleton_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
setEquality, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
unionElimination, 
inrEquality, 
dependent_set_memberEquality, 
inlEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
instantiate, 
productEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:Point(free-DeMorgan-lattice(T;eq))].
    (\mneg{}(x)  \mmember{}  Point(free-DeMorgan-lattice(T;eq)))
Date html generated:
2020_05_20-AM-08_54_24
Last ObjectModification:
2015_12_28-PM-01_57_21
Theory : lattices
Home
Index