Nuprl Lemma : strong-subtype-union
∀[A,B,C,D:Type].  (strong-subtype(A + B;C + D)) supposing (strong-subtype(B;D) and strong-subtype(A;C))
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
true: True
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
strong-subtype-implies, 
subtype_rel_union, 
subtype_base_sq, 
int_subtype_base, 
subtype_rel_transitivity, 
exists_wf, 
equal_wf, 
istype-universe, 
strong-subtype_witness, 
strong-subtype_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
unionElimination, 
Error :inlEquality_alt, 
sqequalRule, 
applyLambdaEquality, 
applyEquality, 
promote_hyp, 
natural_numberEquality, 
instantiate, 
cumulativity, 
intEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
setEquality, 
because_Cache, 
Error :inrEquality_alt, 
Error :setIsType, 
Error :unionIsType, 
Error :productIsType, 
Error :equalityIsType1, 
Error :inhabitedIsType, 
unionEquality, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
universeEquality, 
lambdaEquality, 
dependent_set_memberEquality, 
dependent_pairFormation
Latex:
\mforall{}[A,B,C,D:Type].
    (strong-subtype(A  +  B;C  +  D))  supposing  (strong-subtype(B;D)  and  strong-subtype(A;C))
Date html generated:
2019_06_20-PM-00_27_59
Last ObjectModification:
2018_10_11-PM-04_13_33
Theory : subtype_1
Home
Index