Nuprl Lemma : lattice-extend_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f:T ⟶ Point(L)].
[ac:Point(free-dist-lattice(T; eq))].
  (lattice-extend(L;eq;eqL;f;ac) ∈ Point(L))


Proof




Definitions occuring in Statement :  lattice-extend: lattice-extend(L;eq;eqL;f;ac) free-dist-lattice: free-dist-lattice(T; eq) bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top lattice-extend: lattice-extend(L;eq;eqL;f;ac) subtype_rel: A ⊆B implies:  Q all: x:A. B[x] bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  free-dl-point lattice-fset-join_wf bdd-distributive-lattice-subtype-bdd-lattice decidable-equal-deq fset-image_wf fset_wf deq-fset_wf lattice-fset-meet_wf lattice-point_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lemma_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis setElimination rename sqequalRule hypothesisEquality applyEquality independent_functionElimination lambdaFormation because_Cache dependent_functionElimination lambdaEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity instantiate productEquality universeEquality independent_isectElimination functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f:T  {}\mrightarrow{}  Point(L)].  \mforall{}[ac:Point(free-dist-lattice(T;  eq))].
    (lattice-extend(L;eq;eqL;f;ac)  \mmember{}  Point(L))



Date html generated: 2020_05_20-AM-08_45_32
Last ObjectModification: 2015_12_28-PM-02_00_10

Theory : lattices


Home Index