Nuprl Lemma : bdd-distributive-lattice_wf

BoundedDistributiveLattice ∈ 𝕌'


Proof




Definitions occuring in Statement :  bdd-distributive-lattice: BoundedDistributiveLattice member: t ∈ T universe: Type
Definitions unfolded in proof :  bdd-distributive-lattice: BoundedDistributiveLattice member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bounded-lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-point_wf equal_wf lattice-meet_wf lattice-join_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep setEquality cut lemma_by_obid hypothesis productEquality sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality cumulativity universeEquality because_Cache

Latex:
BoundedDistributiveLattice  \mmember{}  \mBbbU{}'



Date html generated: 2020_05_20-AM-08_25_05
Last ObjectModification: 2015_12_28-PM-02_03_22

Theory : lattices


Home Index