Nuprl Lemma : free-dist-lattice_wf
∀[T:Type]. ∀[eq:EqDecider(T)].  (free-dist-lattice(T; eq) ∈ BoundedDistributiveLattice)
Proof
Definitions occuring in Statement : 
free-dist-lattice: free-dist-lattice(T; eq), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
free-dist-lattice: free-dist-lattice(T; eq), 
prop: ℙ, 
all: ∀x:A. B[x], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
fset-antichain: fset-antichain(eq;ac), 
fset-pairwise: fset-pairwise(x,y.R[x; y];s), 
fset-null: fset-null(s), 
null: null(as), 
fset-filter: {x ∈ s | P[x]}, 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
btrue: tt, 
true: True, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
and: P ∧ Q, 
cand: A c∧ B, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c), 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
fset-all: fset-all(s;x.P[x]), 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
implies: P ⇒ Q, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
guard: {T}, 
top: Top
Lemmas referenced : 
mk-bounded-distributive-lattice-from-order, 
fset_wf, 
assert_wf, 
fset-antichain_wf, 
fset-ac-glb_wf, 
fset-ac-lub_wf, 
empty-fset_wf, 
fset-antichain-singleton, 
fset-singleton_wf, 
fset-ac-le_wf, 
fset-ac-order, 
fset-ac-lub-is-lub, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
deq-f-subset_wf, 
set_wf, 
fset-ac-glb-is-glb, 
fset-ac-le-singleton-empty, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fset-ac-le-distributive, 
iff_weakening_equal, 
deq_wf, 
empty-fset-ac-le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
sqequalRule, 
independent_isectElimination, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
functionExtensionality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
axiomEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (free-dist-lattice(T;  eq)  \mmember{}  BoundedDistributiveLattice)
Date html generated:
2020_05_20-AM-08_44_57
Last ObjectModification:
2017_07_28-AM-09_14_21
Theory : lattices
Home
Index