Nuprl Lemma : free-dist-lattice_wf

[T:Type]. ∀[eq:EqDecider(T)].  (free-dist-lattice(T; eq) ∈ BoundedDistributiveLattice)


Proof




Definitions occuring in Statement :  free-dist-lattice: free-dist-lattice(T; eq) bdd-distributive-lattice: BoundedDistributiveLattice deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dist-lattice: free-dist-lattice(T; eq) prop: all: x:A. B[x] assert: b ifthenelse: if then else fi  fset-antichain: fset-antichain(eq;ac) fset-pairwise: fset-pairwise(x,y.R[x; y];s) fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: btrue: tt true: True so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a and: P ∧ Q cand: c∧ B least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-all: fset-all(s;x.P[x]) so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] implies:  Q greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) iff: ⇐⇒ Q rev_implies:  Q squash: T guard: {T} top: Top
Lemmas referenced :  mk-bounded-distributive-lattice-from-order fset_wf assert_wf fset-antichain_wf fset-ac-glb_wf fset-ac-lub_wf empty-fset_wf fset-antichain-singleton fset-singleton_wf fset-ac-le_wf fset-ac-order fset-ac-lub-is-lub assert_witness fset-null_wf fset-filter_wf bnot_wf deq-f-subset_wf set_wf fset-ac-glb-is-glb fset-ac-le-singleton-empty bool_wf all_wf iff_wf f-subset_wf equal_wf squash_wf true_wf fset-ac-le-distributive iff_weakening_equal deq_wf empty-fset-ac-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setEquality cumulativity hypothesisEquality hypothesis lambdaEquality lambdaFormation setElimination rename dependent_set_memberEquality because_Cache dependent_functionElimination natural_numberEquality sqequalRule independent_isectElimination independent_pairFormation productElimination independent_pairEquality applyEquality independent_functionElimination isect_memberEquality instantiate equalityTransitivity equalitySymmetry functionEquality functionExtensionality imageElimination imageMemberEquality baseClosed universeEquality axiomEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (free-dist-lattice(T;  eq)  \mmember{}  BoundedDistributiveLattice)



Date html generated: 2020_05_20-AM-08_44_57
Last ObjectModification: 2017_07_28-AM-09_14_21

Theory : lattices


Home Index