Nuprl Lemma : free-dist-lattice_wf
∀[T:Type]. ∀[eq:EqDecider(T)].  (free-dist-lattice(T; eq) ∈ BoundedDistributiveLattice)
Proof
Definitions occuring in Statement : 
free-dist-lattice: free-dist-lattice(T; eq)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
fset-antichain: fset-antichain(eq;ac)
, 
fset-pairwise: fset-pairwise(x,y.R[x; y];s)
, 
fset-null: fset-null(s)
, 
null: null(as)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
btrue: tt
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
fset-all: fset-all(s;x.P[x])
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
guard: {T}
, 
top: Top
Lemmas referenced : 
mk-bounded-distributive-lattice-from-order, 
fset_wf, 
assert_wf, 
fset-antichain_wf, 
fset-ac-glb_wf, 
fset-ac-lub_wf, 
empty-fset_wf, 
fset-antichain-singleton, 
fset-singleton_wf, 
fset-ac-le_wf, 
fset-ac-order, 
fset-ac-lub-is-lub, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
deq-f-subset_wf, 
set_wf, 
fset-ac-glb-is-glb, 
fset-ac-le-singleton-empty, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fset-ac-le-distributive, 
iff_weakening_equal, 
deq_wf, 
empty-fset-ac-le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
sqequalRule, 
independent_isectElimination, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
functionExtensionality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
axiomEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (free-dist-lattice(T;  eq)  \mmember{}  BoundedDistributiveLattice)
Date html generated:
2020_05_20-AM-08_44_57
Last ObjectModification:
2017_07_28-AM-09_14_21
Theory : lattices
Home
Index