Nuprl Lemma : mk-bounded-distributive-lattice-from-order

[T:Type]. ∀[m,j:T ⟶ T ⟶ T]. ∀[z,o:T]. ∀[R:T ⟶ T ⟶ ℙ].
  {points=T;
   meet=m;
   join=j;
   0=z;
   1=o} ∈ BoundedDistributiveLattice 
  supposing Order(T;x,y.R[x;y])
  ∧ (∀[a,b:T].  least-upper-bound(T;x,y.R[x;y];a;b;j[a;b]))
  ∧ (∀[a,b:T].  greatest-lower-bound(T;x,y.R[x;y];a;b;m[a;b]))
  ∧ (∀[a:T]. R[a;o])
  ∧ (∀[a:T]. R[z;a])
  ∧ (∀[a,b,c:T].  (m[a;j[b;c]] j[m[a;b];m[a;c]] ∈ T))


Proof




Definitions occuring in Statement :  mk-bounded-distributive-lattice: mk-bounded-distributive-lattice bdd-distributive-lattice: BoundedDistributiveLattice greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c) least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) order: Order(T;x,y.R[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  mk-bounded-distributive-lattice: mk-bounded-distributive-lattice member: t ∈ T bdd-distributive-lattice: BoundedDistributiveLattice prop: and: P ∧ Q uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) bounded-lattice-structure: BoundedLatticeStructure record+: record+ record-update: r[x := v] record: record(x.T[x]) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} record-select: r.x top: Top eq_atom: =a y bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q lattice-structure: LatticeStructure lattice-point: Point(l) lattice-meet: a ∧ b lattice-join: a ∨ b exists: x:A. B[x] bounded-lattice-axioms: bounded-lattice-axioms(l) lattice-1: 1 lattice-0: 0 cand: c∧ B least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) order: Order(T;x,y.R[x; y]) refl: Refl(T;x,y.E[x; y]) greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
Lemmas referenced :  order_wf uall_wf least-upper-bound_wf greatest-lower-bound_wf equal_wf eq_atom_wf uiff_transitivity equal-wf-base bool_wf assert_wf atom_subtype_base eqtt_to_assert assert_of_eq_atom subtype_base_sq rec_select_update_lemma iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot lattice-axioms-from-order least-upper-bound-unique greatest-lower-bound-unique lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-point_wf lattice-meet_wf lattice-join_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_set_memberEquality productEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality because_Cache hypothesis functionEquality universeEquality isect_memberFormation axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality dependentIntersection_memberEquality tokenEquality lambdaFormation unionElimination equalityElimination baseApply closedConclusion baseClosed atomEquality productElimination independent_functionElimination independent_isectElimination instantiate dependent_functionElimination voidElimination voidEquality independent_pairFormation impliesFunctionality dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[m,j:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[z,o:T].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \{points=T;
      meet=m;
      join=j;
      0=z;
      1=o\}  \mmember{}  BoundedDistributiveLattice 
    supposing  Order(T;x,y.R[x;y])
    \mwedge{}  (\mforall{}[a,b:T].    least-upper-bound(T;x,y.R[x;y];a;b;j[a;b]))
    \mwedge{}  (\mforall{}[a,b:T].    greatest-lower-bound(T;x,y.R[x;y];a;b;m[a;b]))
    \mwedge{}  (\mforall{}[a:T].  R[a;o])
    \mwedge{}  (\mforall{}[a:T].  R[z;a])
    \mwedge{}  (\mforall{}[a,b,c:T].    (m[a;j[b;c]]  =  j[m[a;b];m[a;c]]))



Date html generated: 2020_05_20-AM-08_25_17
Last ObjectModification: 2017_07_28-AM-09_12_44

Theory : lattices


Home Index