Nuprl Lemma : mk-bounded-distributive-lattice-from-order
∀[T:Type]. ∀[m,j:T ⟶ T ⟶ T]. ∀[z,o:T]. ∀[R:T ⟶ T ⟶ ℙ].
  {points=T;
   meet=m;
   join=j;
   0=z;
   1=o} ∈ BoundedDistributiveLattice 
  supposing Order(T;x,y.R[x;y])
  ∧ (∀[a,b:T].  least-upper-bound(T;x,y.R[x;y];a;b;j[a;b]))
  ∧ (∀[a,b:T].  greatest-lower-bound(T;x,y.R[x;y];a;b;m[a;b]))
  ∧ (∀[a:T]. R[a;o])
  ∧ (∀[a:T]. R[z;a])
  ∧ (∀[a,b,c:T].  (m[a;j[b;c]] = j[m[a;b];m[a;c]] ∈ T))
Proof
Definitions occuring in Statement : 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
, 
order: Order(T;x,y.R[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
member: t ∈ T
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
prop: ℙ
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
bounded-lattice-structure: BoundedLatticeStructure
, 
record+: record+, 
record-update: r[x := v]
, 
record: record(x.T[x])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
record-select: r.x
, 
top: Top
, 
eq_atom: x =a y
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
lattice-structure: LatticeStructure
, 
lattice-point: Point(l)
, 
lattice-meet: a ∧ b
, 
lattice-join: a ∨ b
, 
exists: ∃x:A. B[x]
, 
bounded-lattice-axioms: bounded-lattice-axioms(l)
, 
lattice-1: 1
, 
lattice-0: 0
, 
cand: A c∧ B
, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
, 
order: Order(T;x,y.R[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
Lemmas referenced : 
order_wf, 
uall_wf, 
least-upper-bound_wf, 
greatest-lower-bound_wf, 
equal_wf, 
eq_atom_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
assert_wf, 
atom_subtype_base, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
rec_select_update_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
lattice-axioms-from-order, 
least-upper-bound-unique, 
greatest-lower-bound-unique, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-point_wf, 
lattice-meet_wf, 
lattice-join_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
hypothesis, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
dependentIntersection_memberEquality, 
tokenEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
atomEquality, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
instantiate, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
impliesFunctionality, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[m,j:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[z,o:T].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \{points=T;
      meet=m;
      join=j;
      0=z;
      1=o\}  \mmember{}  BoundedDistributiveLattice 
    supposing  Order(T;x,y.R[x;y])
    \mwedge{}  (\mforall{}[a,b:T].    least-upper-bound(T;x,y.R[x;y];a;b;j[a;b]))
    \mwedge{}  (\mforall{}[a,b:T].    greatest-lower-bound(T;x,y.R[x;y];a;b;m[a;b]))
    \mwedge{}  (\mforall{}[a:T].  R[a;o])
    \mwedge{}  (\mforall{}[a:T].  R[z;a])
    \mwedge{}  (\mforall{}[a,b,c:T].    (m[a;j[b;c]]  =  j[m[a;b];m[a;c]]))
Date html generated:
2020_05_20-AM-08_25_17
Last ObjectModification:
2017_07_28-AM-09_12_44
Theory : lattices
Home
Index