Nuprl Lemma : lattice-axioms-from-order
∀[l:LatticeStructure]
  lattice-axioms(l) 
  supposing ∃R:Point(l) ⟶ Point(l) ⟶ ℙ
             (((∀[a,b:Point(l)].  least-upper-bound(Point(l);x,y.R[x;y];a;b;a ∨ b))
             ∧ (∀[a,b:Point(l)].  greatest-lower-bound(Point(l);x,y.R[x;y];a;b;a ∧ b)))
             ∧ Order(Point(l);x,y.R[x;y]))
Proof
Definitions occuring in Statement : 
lattice-axioms: lattice-axioms(l)
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
lattice-structure: LatticeStructure
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
, 
order: Order(T;x,y.R[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
lattice-axioms: lattice-axioms(l)
, 
cand: A c∧ B
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
, 
all: ∀x:A. B[x]
, 
order: Order(T;x,y.R[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
Lemmas referenced : 
lattice-point_wf, 
exists_wf, 
uall_wf, 
least-upper-bound_wf, 
lattice-join_wf, 
greatest-lower-bound_wf, 
lattice-meet_wf, 
order_wf, 
lattice-structure_wf, 
glb-com, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
lub-com, 
glb-assoc, 
lub-assoc, 
least-upper-bound-unique, 
greatest-lower-bound-unique
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
hypothesis, 
because_Cache, 
sqequalRule, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
independent_pairEquality, 
extract_by_obid, 
instantiate, 
functionEquality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
universeEquality, 
productEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
lambdaFormation, 
dependent_functionElimination
Latex:
\mforall{}[l:LatticeStructure]
    lattice-axioms(l) 
    supposing  \mexists{}R:Point(l)  {}\mrightarrow{}  Point(l)  {}\mrightarrow{}  \mBbbP{}
                          (((\mforall{}[a,b:Point(l)].    least-upper-bound(Point(l);x,y.R[x;y];a;b;a  \mvee{}  b))
                          \mwedge{}  (\mforall{}[a,b:Point(l)].    greatest-lower-bound(Point(l);x,y.R[x;y];a;b;a  \mwedge{}  b)))
                          \mwedge{}  Order(Point(l);x,y.R[x;y]))
Date html generated:
2020_05_20-AM-08_23_39
Last ObjectModification:
2017_07_28-AM-09_12_31
Theory : lattices
Home
Index