Nuprl Lemma : empty-fset-ac-le

[eq,a:Top].  (fset-ac-le(eq;{};a) True)


Proof




Definitions occuring in Statement :  fset-ac-le: fset-ac-le(eq;ac1;ac2) empty-fset: {} uall: [x:A]. B[x] top: Top true: True sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-all: fset-all(s;x.P[x]) assert: b ifthenelse: if then else fi  fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind true: True empty-fset: {} nil: [] it: btrue: tt
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[eq,a:Top].    (fset-ac-le(eq;\{\};a)  \msim{}  True)



Date html generated: 2016_05_14-PM-03_43_03
Last ObjectModification: 2016_01_07-PM-04_46_02

Theory : finite!sets


Home Index