Nuprl Lemma : fset-ac-le-singleton-empty
∀[T:Type]. ∀eq:EqDecider(T). ∀a:fset(fset(T)).  fset-ac-le(eq;a;{{}})
Proof
Definitions occuring in Statement : 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
empty-fset: {}
, 
fset-singleton: {x}
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
fset-all: fset-all(s;x.P[x])
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
fset-null: fset-null(s)
, 
null: null(as)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-singleton: {x}
, 
cons: [a / b]
, 
deq-f-subset: deq-f-subset(eq)
, 
isl: isl(x)
, 
decidable__f-subset, 
decidable__all_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__assert, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
true: True
Lemmas referenced : 
decidable__f-subset, 
decidable__all_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__assert, 
fset_wf, 
deq_wf, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
deq-f-subset_wf, 
fset-singleton_wf, 
empty-fset_wf, 
fset-all-iff, 
deq-fset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
assert_wf, 
fset-member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
cumulativity, 
because_Cache, 
instantiate, 
isectEquality, 
universeEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
independent_functionElimination, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
productElimination, 
independent_isectElimination, 
natural_numberEquality
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}a:fset(fset(T)).    fset-ac-le(eq;a;\{\{\}\})
Date html generated:
2016_05_14-PM-03_43_06
Last ObjectModification:
2015_12_26-PM-06_39_20
Theory : finite!sets
Home
Index