Nuprl Lemma : fset-ac-le-singleton-empty

[T:Type]. ∀eq:EqDecider(T). ∀a:fset(fset(T)).  fset-ac-le(eq;a;{{}})


Proof




Definitions occuring in Statement :  fset-ac-le: fset-ac-le(eq;ac1;ac2) empty-fset: {} fset-singleton: {x} fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] fset-ac-le: fset-ac-le(eq;ac1;ac2) fset-all: fset-all(s;x.P[x]) so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] implies:  Q iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q prop: uiff: uiff(P;Q) uimplies: supposing a assert: b ifthenelse: if then else fi  bnot: ¬bb fset-null: fset-null(s) null: null(as) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind fset-singleton: {x} cons: [a b] deq-f-subset: deq-f-subset(eq) isl: isl(x) decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability decidable__assert empty-fset: {} nil: [] it: btrue: tt bfalse: ff true: True
Lemmas referenced :  decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability decidable__assert fset_wf deq_wf assert_witness fset-null_wf fset-filter_wf bnot_wf deq-f-subset_wf fset-singleton_wf empty-fset_wf fset-all-iff deq-fset_wf bool_wf all_wf iff_wf f-subset_wf assert_wf fset-member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination cumulativity because_Cache instantiate isectEquality universeEquality applyEquality equalityTransitivity equalitySymmetry isect_memberEquality independent_functionElimination setElimination rename setEquality functionEquality productElimination independent_isectElimination natural_numberEquality

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}a:fset(fset(T)).    fset-ac-le(eq;a;\{\{\}\})



Date html generated: 2016_05_14-PM-03_43_06
Last ObjectModification: 2015_12_26-PM-06_39_20

Theory : finite!sets


Home Index