Nuprl Lemma : fset-ac-le-singleton-empty
∀[T:Type]. ∀eq:EqDecider(T). ∀a:fset(fset(T)). fset-ac-le(eq;a;{{}})
Proof
Definitions occuring in Statement :
fset-ac-le: fset-ac-le(eq;ac1;ac2)
,
empty-fset: {}
,
fset-singleton: {x}
,
fset: fset(T)
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
fset-ac-le: fset-ac-le(eq;ac1;ac2)
,
fset-all: fset-all(s;x.P[x])
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
and: P ∧ Q
,
prop: ℙ
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bnot: ¬bb
,
fset-null: fset-null(s)
,
null: null(as)
,
fset-filter: {x ∈ s | P[x]}
,
filter: filter(P;l)
,
reduce: reduce(f;k;as)
,
list_ind: list_ind,
fset-singleton: {x}
,
cons: [a / b]
,
deq-f-subset: deq-f-subset(eq)
,
isl: isl(x)
,
decidable__f-subset,
decidable__all_fset,
decidable_functionality,
iff_preserves_decidability,
decidable__assert,
empty-fset: {}
,
nil: []
,
it: ⋅
,
btrue: tt
,
bfalse: ff
,
true: True
Lemmas referenced :
decidable__f-subset,
decidable__all_fset,
decidable_functionality,
iff_preserves_decidability,
decidable__assert,
fset_wf,
deq_wf,
assert_witness,
fset-null_wf,
fset-filter_wf,
bnot_wf,
deq-f-subset_wf,
fset-singleton_wf,
empty-fset_wf,
fset-all-iff,
deq-fset_wf,
bool_wf,
all_wf,
iff_wf,
f-subset_wf,
assert_wf,
fset-member_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
sqequalRule,
lambdaEquality,
dependent_functionElimination,
cumulativity,
because_Cache,
instantiate,
isectEquality,
universeEquality,
applyEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
independent_functionElimination,
setElimination,
rename,
setEquality,
functionEquality,
productElimination,
independent_isectElimination,
natural_numberEquality
Latex:
\mforall{}[T:Type]. \mforall{}eq:EqDecider(T). \mforall{}a:fset(fset(T)). fset-ac-le(eq;a;\{\{\}\})
Date html generated:
2016_05_14-PM-03_43_06
Last ObjectModification:
2015_12_26-PM-06_39_20
Theory : finite!sets
Home
Index