Nuprl Lemma : strong-subtype-void
∀[T:Type]. strong-subtype(Void;T)
Proof
Definitions occuring in Statement :
strong-subtype: strong-subtype(A;B)
,
uall: ∀[x:A]. B[x]
,
void: Void
,
universe: Type
Definitions unfolded in proof :
strong-subtype: strong-subtype(A;B)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cand: A c∧ B
,
subtype_rel: A ⊆r B
,
guard: {T}
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
,
prop: ℙ
Lemmas referenced :
exists_wf,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lambdaEquality,
voidElimination,
voidEquality,
independent_pairFormation,
hypothesis,
setEquality,
hypothesisEquality,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
applyEquality,
because_Cache,
productElimination,
independent_pairEquality,
axiomEquality,
universeEquality,
setElimination,
rename
Latex:
\mforall{}[T:Type]. strong-subtype(Void;T)
Date html generated:
2016_05_13-PM-04_11_09
Last ObjectModification:
2015_12_26-AM-11_21_37
Theory : subtype_1
Home
Index