Nuprl Lemma : opposite-lattice_wf
∀[L:BoundedDistributiveLattice]. (opposite-lattice(L) ∈ BoundedDistributiveLattice)
Proof
Definitions occuring in Statement : 
opposite-lattice: opposite-lattice(L)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
opposite-lattice: opposite-lattice(L)
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
guard: {T}
, 
distributive-lattice: DistributiveLattice
, 
lattice: Lattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bdd-lattice: BoundedLattice
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
bdd-distributive-lattice-subtype-distributive-lattice, 
mk-bounded-distributive-lattice_wf, 
lattice-point_wf, 
bounded-lattice-structure-subtype, 
lattice-join_wf, 
lattice-meet_wf, 
lattice-1_wf, 
lattice-0_wf, 
lattice_properties, 
subtype_rel_sets, 
lattice-structure_wf, 
lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-join-0, 
bounded-lattice-axioms_wf, 
squash_wf, 
true_wf, 
lattice-meet-1, 
iff_weakening_equal, 
distributive-lattice-dual-distrib, 
bdd-distributive-lattice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
setElimination, 
thin, 
rename, 
productElimination, 
isectElimination, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
productEquality, 
cumulativity, 
setEquality, 
lambdaFormation, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[L:BoundedDistributiveLattice].  (opposite-lattice(L)  \mmember{}  BoundedDistributiveLattice)
Date html generated:
2020_05_20-AM-08_47_04
Last ObjectModification:
2017_07_28-AM-09_14_59
Theory : lattices
Home
Index