Nuprl Lemma : opposite-lattice_wf

[L:BoundedDistributiveLattice]. (opposite-lattice(L) ∈ BoundedDistributiveLattice)


Proof




Definitions occuring in Statement :  opposite-lattice: opposite-lattice(L) bdd-distributive-lattice: BoundedDistributiveLattice uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice opposite-lattice: opposite-lattice(L) and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a cand: c∧ B guard: {T} distributive-lattice: DistributiveLattice lattice: Lattice so_lambda: λ2x.t[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q bdd-lattice: BoundedLattice squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bdd-distributive-lattice-subtype-distributive-lattice mk-bounded-distributive-lattice_wf lattice-point_wf bounded-lattice-structure-subtype lattice-join_wf lattice-meet_wf lattice-1_wf lattice-0_wf lattice_properties subtype_rel_sets lattice-structure_wf lattice-axioms_wf uall_wf equal_wf lattice-join-0 bounded-lattice-axioms_wf squash_wf true_wf lattice-meet-1 iff_weakening_equal distributive-lattice-dual-distrib bdd-distributive-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality applyEquality extract_by_obid hypothesis sqequalHypSubstitution sqequalRule setElimination thin rename productElimination isectElimination lambdaEquality because_Cache independent_isectElimination equalityTransitivity equalitySymmetry instantiate productEquality cumulativity setEquality lambdaFormation isect_memberEquality axiomEquality independent_pairFormation dependent_set_memberEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[L:BoundedDistributiveLattice].  (opposite-lattice(L)  \mmember{}  BoundedDistributiveLattice)



Date html generated: 2020_05_20-AM-08_47_04
Last ObjectModification: 2017_07_28-AM-09_14_59

Theory : lattices


Home Index